Skip to main content

802.11 WLAN Frames (Management, Control, Data frames)

There are 3 types of frames used in the 802.11 MAC layer 2 communications happening over the air which manages and controls the wireless link.
2.png
They are Management Frames, Control Frames and Data frames. 

Management Frame:


1)    Authentication frame
2)    Deauthentication frame
3)    Association request frame
4)    Association response frame
5)    Reassociation request frame
6)    Reassociation response frame
7)    Disassociation frame
8)    Beacon frame
9)    Probe request frame
10) Probe response frame

Control Frames:

802.11 control frames assist in the delivery of data frames between stations. The following are common 802.11 control frame subtypes:
·         Request to Send (RTS)/Clear to Send(CTS) frame: The RTS/CTS function is optional and reduces frame collisions present when hidden stations have associations with the same access point. A station sends a RTS frame to another station as the first phase of a two-way handshake necessary before sending a data frame.
RTS/CTS is the optional mechanism used by the 802.11 wireless networking protocol to reduce frame collisions introduced by the hidden node problem. Originally the protocol fixed the exposed node problem as well, but modern RTS/CTS includes ACKs and does not solve the exposed node problem.
Frame Format:
The RTS frame contains five fields, which are:
1.     Frame Control
2.     Duration
3.     RA (Receiver Address)
4.     TA (Transmitter Address)
5.     FCS
The CTS frame contains four fields, which are:
1.     Frame Control
2.     Duration
3.     RA (Receiver Address)
4.     FCS
The ACK frame contains four fields, which are:
1.     Frame Control
2.     Duration
3.     RA (Receiver Address)
4.     FCS
RA - Receiver Address indicating the MAC Address of the station that shall receive frame.
TA - Transmitter Address indicating the MAC address of the station which has transmitted frame.
FCS - Frame Check Sequence.

Acknowledgement (ACK) frame: After receiving a data frame, the receiving station will utilize an error checking processes to detect the presence of errors. The receiving station will send an ACK frame to the sending station if no errors are found. If the sending station doesn't receive an ACK after a period of time, the sending station will retransmit the frame.

Data Frames:

These at the frames which come later in the game after the basic wlan communication is already established between the Mobile station and the Access point. We will always reach to this 802.11 data frame for analysis typically to verify and analyze over the air if the protocols and data from higher layers within the frame body is getting through to the wire. These frames transport data packets from higher layers, such as web pages, printer control data, etc., within the body of the frame.

Comments

Popular posts from this blog

What is QinQ(IEEE 802.1ad)

What is QinQ In this section, we will see about Switching concept QinQ. In service provider networks, This is very important. Service provider use this Switching function to pass customer data from one end to other end with two vlan id’s in own switching network.  Explanation: The QinQ technology is called VLAN dot1q tunnel, 802.1Q tunnel, VLAN Stacking technology. The standard comes from IEEE 802.1ad and it is the expansion of the 802.1Q protocol. QinQ adds one layer of 802.1Q tag (VLAN tag) based on the original 802.1Q packet head. With the double layers of tags, the VLAN quantity is increased to 802.1Q. QinQ encapsulates the private network VLAN tag of the user in the public(service provider) network VLAN Tag to make the packet with double layers of VLAN Tags cross the backbone network (public network) of the operator. In the public network, the packet is passed according to the out layer of VLAN tag (that is the public network VLAN Tag) and the private netw...

Beacon Frames, Probe request and response

Beacon frame  is one of the management frames in  IEEE 802.11  based WLANs. It contains all the information about the network. Beacon frames are transmitted periodically, they serve to announce the presence of a wireless LAN and to synchronise the members of the service set. Beacon frames are transmitted by the  access point  (AP) in an infrastructure  basic service set  (BSS). In IBSS network beacon generation is distributed among the stations. Beacons are sent periodically at a time called Target Beacon Transmission Time(TBTT) 1 TU = 1024 microseconds Beacon interval =100 TU (100x 1024 microseconds or 102.4 milliseconds) 1. Timestamp (8 byte) 2. Beacon Interval (2 byte) 3. Capability info (2 byte) 4. SSID (variable size) 5. Supported Rates (variable size) Probe Request:  A station or client becomes active or on a PC when the wlan card it enabled it becomes acti...

Difference between Polling and Trap in Network Management – Which one is better?

A Network Manager’s job is to get data from Network Elements and present it to the administrators or operators. There are two ways of doing this activity:  1) Polling and 2) Trap . Here is a quick difference between the two: Polling  : A traditional way of providing operators with the network elements information. It’s characteristics are as follows: ·        Pull Mechanism – Requests and get information from network elements at periodic intervals. The periodic interval is most often configurable. ·        Provides non-real time information. It may happen that some changes happen in network element but polling happens an hour after that. Thus, operator gets to know about the changes after an hour. ·        Higher bandwidth needed. Traps  : When an alarm situation exists a trap can be generated, or if some changes happen at network element, an attribute value chang...