Skip to main content

Reliable trap infrastructure:



The "reliable traps" option offers the flexibility for the management system to retrieve lost traps. Network elements use a sequence number for each trap being sent. Whenever the management system receives a trap that is out of sequence, it can connect to the network element and fetch the traps that were lost. While designing the reliable traps MIB, we recommend that you follow these two key strategies:
Maintain a sequence number for each trap that is sent from each and every network element. Make sure that this sequence number is maintained as the key for the trap table. This will ensure that fetching a lost trap is straightforward. If the sequence number is maintained as part of a column instead of part of an index, then the number of SNMP queries to be done by the management system will increase.
The trap table should have a set of columns that are able to accommodate the varbinds attached to each trap. Each trap might have a different set of varbinds. Therefore, it is necessary to design the trap table efficiently to include the correct set of columns.

Comments

Popular posts from this blog

What is QinQ(IEEE 802.1ad)

What is QinQ In this section, we will see about Switching concept QinQ. In service provider networks, This is very important. Service provider use this Switching function to pass customer data from one end to other end with two vlan id’s in own switching network.  Explanation: The QinQ technology is called VLAN dot1q tunnel, 802.1Q tunnel, VLAN Stacking technology. The standard comes from IEEE 802.1ad and it is the expansion of the 802.1Q protocol. QinQ adds one layer of 802.1Q tag (VLAN tag) based on the original 802.1Q packet head. With the double layers of tags, the VLAN quantity is increased to 802.1Q. QinQ encapsulates the private network VLAN tag of the user in the public(service provider) network VLAN Tag to make the packet with double layers of VLAN Tags cross the backbone network (public network) of the operator. In the public network, the packet is passed according to the out layer of VLAN tag (that is the public network VLAN Tag) and the private network

Beacon Frames, Probe request and response

Beacon frame  is one of the management frames in  IEEE 802.11  based WLANs. It contains all the information about the network. Beacon frames are transmitted periodically, they serve to announce the presence of a wireless LAN and to synchronise the members of the service set. Beacon frames are transmitted by the  access point  (AP) in an infrastructure  basic service set  (BSS). In IBSS network beacon generation is distributed among the stations. Beacons are sent periodically at a time called Target Beacon Transmission Time(TBTT) 1 TU = 1024 microseconds Beacon interval =100 TU (100x 1024 microseconds or 102.4 milliseconds) 1. Timestamp (8 byte) 2. Beacon Interval (2 byte) 3. Capability info (2 byte) 4. SSID (variable size) 5. Supported Rates (variable size) Probe Request:  A station or client becomes active or on a PC when the wlan card it enabled it becomes active sends a probe request frame when it needs to obtain information from another station or access point.

Difference between Polling and Trap in Network Management – Which one is better?

A Network Manager’s job is to get data from Network Elements and present it to the administrators or operators. There are two ways of doing this activity:  1) Polling and 2) Trap . Here is a quick difference between the two: Polling  : A traditional way of providing operators with the network elements information. It’s characteristics are as follows: ·        Pull Mechanism – Requests and get information from network elements at periodic intervals. The periodic interval is most often configurable. ·        Provides non-real time information. It may happen that some changes happen in network element but polling happens an hour after that. Thus, operator gets to know about the changes after an hour. ·        Higher bandwidth needed. Traps  : When an alarm situation exists a trap can be generated, or if some changes happen at network element, an attribute value change event can be generated by the agent. It’s characteristic are as follows: ·        Push Mechanism – E